Answer:
The answer is "
"
Explanation:
Consider the cube volume of x =6 cm.
Substitute x = 6 cm in the volume
![V= x^3\\\\ V = (6)^3\\\\ V = 216](https://img.qammunity.org/2021/formulas/mathematics/college/vu8xxic4rjx35r4vkgzvbllxb47tezrdp1.png)
Therefore, whenever the cube volume
![x=6 \ cm \ is \ V= 216 \ cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/dn46d0o2w5vf0wypkdhmbqclppf3fnsxr8.png)
Then consider the cube's volume
x = 6.5 cm.
Substitute x = 6.5 cm in the volume
by using the calculator.
Therefore, when another cube volume
![x = 6.5 cm \\\\ V_1 = 274.625 cm^3.](https://img.qammunity.org/2021/formulas/mathematics/college/5u8qng1x1o1f4vkq14xwe24rwq0kr0wtbx.png)
The real volume error x = 6.5 cm instead of x = 6 cm is calculated as,
![dV= V_1-V\\](https://img.qammunity.org/2021/formulas/mathematics/college/vuxx9wwol4tjk3x7zwebsj55ga1l0kobr4.png)
![=274.625-216\\=58.625\\](https://img.qammunity.org/2021/formulas/mathematics/college/ucply2i9xnmg1xg94ixiubnope71o00s97.png)
Hence, the actual error in the volume when x = 6.5 cm instead of x = 6 cm is
![58.625 \ cm^3.](https://img.qammunity.org/2021/formulas/mathematics/college/jcs4d3morifjhwhwvk9cveyok6qhq6qzp3.png)