Answer:
(n - 1)/2
Explanation:
F = (1 - 1/n) + (1 - 2/n) + (1 - 3/n) + ...(1 - n/n)
= (1 + 1 ... + 1) - (1/n + 2/n + 3/n + ...n/n)
(there are n terms of 1)
= n - (1 + 2 + 3 + ... + n)/n
= n - [n x (n + 1)/2]/n
= n - [n x (n + 1)]/[2 x n]
= n - (n+1)/2
= (2n - n - 1)/2
= (n - 1)/2
Hope this helps!