32.2k views
2 votes
Compute i^1+i^2+i^3+...+ i^97 + i^98+i^99.

1 Answer

3 votes

If
i=√(-1), then
i^2=-1,
i^3=-i, and
i^4=1.

We can break up the given sum into 25 groups (after adding and subtracting
i^(100)):


(i+i^2+i^3+i^4)+(i^5+i^6+i^7+i^8)+\cdots+(i^(97)+i^(98)+i^(99)+i^(100))-i^(100)

We have


i+i^2+i^3+i^4=i-1-i+1=0

and in each group, we can pull this out as a factor. For example,


i^(97)+i^(98)+i^(99)+i^(100)=i^(96)(i+i^2+i^3+i^4)=0

So the entire sum reduces to the remaining term,


-i^(100)=-i^(25\cdot4)=-(i^4)^(25)=-1^(25)=\boxed{-1}

User Camdixon
by
4.1k points