Answer:
![P(0.34 <\hat p<0.49)](https://img.qammunity.org/2021/formulas/mathematics/college/isqf4um9glc1hom2s80prpqu9av0fca9wi.png)
And the distribution for the sample proportion is given by;
![\hat p \sim N(p, \sqrt{(p(1-p))/(n)})](https://img.qammunity.org/2021/formulas/mathematics/college/25108am2w80u0a9lyi3z1r7f7jz69otybn.png)
And we can find the mean and deviation for the sample proportion:
[te]\mu_{\hat p}= 0.36[/tex]
![\sigma_(\hat p) =\sqrt{(0.36(1-0.36))/(195)}= 0.0344](https://img.qammunity.org/2021/formulas/mathematics/college/7rtd6f415xc0c8ljnf9ee2gmo4dq2wnknh.png)
And we can use the z score formula given by:
![z = (0.34 -0.36)/(0.0344)= -0.582](https://img.qammunity.org/2021/formulas/mathematics/college/cfcznx3p0mq6coav5huha52hokmetmfkyd.png)
![z = (0.49 -0.36)/(0.0344)= 3.782](https://img.qammunity.org/2021/formulas/mathematics/college/9tg9ml0hcy21savp74cc306rvv9qn905nv.png)
And we can use the normal distribution table and we got:
![P(-0.582 <z< 3.782) =P(z<3.782)-P(z<-0.582)=0.99992-0.2803= 0.71962](https://img.qammunity.org/2021/formulas/mathematics/college/issigeeg8u1p1muxgbavmbc3x2du0i6wy0.png)
Explanation:
For this case we know that the sample size is n =195 and the probability of success is p=0.36.
We want to find the following probability:
![P(0.34 <\hat p<0.49)](https://img.qammunity.org/2021/formulas/mathematics/college/isqf4um9glc1hom2s80prpqu9av0fca9wi.png)
And the distribution for the sample proportion is given by;
![\hat p \sim N(p, \sqrt{(p(1-p))/(n)})](https://img.qammunity.org/2021/formulas/mathematics/college/25108am2w80u0a9lyi3z1r7f7jz69otybn.png)
And we can find the mean and deviation for the sample proportion:
![\mu_(\hat p)= 0.36](https://img.qammunity.org/2021/formulas/mathematics/college/u6s6gk76r7jmzhliv82noo78gob2vv9rr5.png)
![\sigma_(\hat p) =\sqrt{(0.36(1-0.36))/(195)}= 0.0344](https://img.qammunity.org/2021/formulas/mathematics/college/7rtd6f415xc0c8ljnf9ee2gmo4dq2wnknh.png)
And we can use the z score formula given by:
![z = (0.34 -0.36)/(0.0344)= -0.582](https://img.qammunity.org/2021/formulas/mathematics/college/cfcznx3p0mq6coav5huha52hokmetmfkyd.png)
![z = (0.49 -0.36)/(0.0344)= 3.782](https://img.qammunity.org/2021/formulas/mathematics/college/9tg9ml0hcy21savp74cc306rvv9qn905nv.png)
And we can use the normal distribution table and we got:
![P(-0.582 <z< 3.782) =P(z<3.782)-P(z<-0.582)=0.99992-0.2803= 0.71962](https://img.qammunity.org/2021/formulas/mathematics/college/issigeeg8u1p1muxgbavmbc3x2du0i6wy0.png)