134k views
3 votes
A scientist mixed 25.00 mL of 2.00 M KOH with 25.00 mL of 2.00 M HBr. The temperature of the mixed solution rose from 22.7 oC to 31.9 oC. Calculate the enthalpy change for the reaction in kJ/mol HBr, assuming that the calorimeter loses negligible heat, that the volumes are additive, and that the solution density is 1.00 g/mL, and that its specific heat is 4.184 J/g.oC.

User Xabriel
by
5.7k points

1 Answer

1 vote

Answer:

38.493 KJ/mol

Step-by-step explanation:

Equation of reaction; HBr + KOH ---> KBr + H2O

Heat evolved = mass * specific heat capacity * temperature rise

Mass of solution = density * volume

Mass = 1.00 g/ml*50 ml = 50g

Temperature rise = 31.9 - 22.7 = 9.2 °C

Heat evolved = 50 * 4.184 * 9.2 = 1924.64 J

From the equation of reaction, 1 mole of HBr reacts with 1mole of KOH to produce 1 mole of H20

Number of moles of HBr involved in the reaction = molar concentration * volume (L)

Molar concentration = 2.0 M, volume = 25 ml = 0.025 L

Number of moles = 2.0 M * 0.025 L= 0.05 moles

Therefore, 0.05 moles of HBr reacts with 0.05 moles of KOH to produce 0.05 moles of H20

Enthalpy change per mole of HBr = 1924.64 J/0.05 moles = 38492.8 J/mol = 38.493 KJ/mol

User Sachin Gurnani
by
5.5k points