Answer:
38.493 KJ/mol
Step-by-step explanation:
Equation of reaction; HBr + KOH ---> KBr + H2O
Heat evolved = mass * specific heat capacity * temperature rise
Mass of solution = density * volume
Mass = 1.00 g/ml*50 ml = 50g
Temperature rise = 31.9 - 22.7 = 9.2 °C
Heat evolved = 50 * 4.184 * 9.2 = 1924.64 J
From the equation of reaction, 1 mole of HBr reacts with 1mole of KOH to produce 1 mole of H20
Number of moles of HBr involved in the reaction = molar concentration * volume (L)
Molar concentration = 2.0 M, volume = 25 ml = 0.025 L
Number of moles = 2.0 M * 0.025 L= 0.05 moles
Therefore, 0.05 moles of HBr reacts with 0.05 moles of KOH to produce 0.05 moles of H20
Enthalpy change per mole of HBr = 1924.64 J/0.05 moles = 38492.8 J/mol = 38.493 KJ/mol