Answer:
In terms of h, the radius of the cone is
![(3√(7) )/(√(h) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/3q37nufa6ss9duuvwwggam5ydwobkr6gby.png)
Explanation:
The formula for finding the volume of a cone is
![Volume(V) = (1)/(3) \pi r^(2) h](https://img.qammunity.org/2021/formulas/mathematics/high-school/ccdv2o2xla2xut90shtmi9df14qybx9ssw.png)
Make r the subject of formula in the equation above
![3V = \pi r^(2) h](https://img.qammunity.org/2021/formulas/mathematics/high-school/ypgxvg5d7z2yr1wnpx0ximiugg6pguy3pw.png)
![(3V)/(\pi h ) = (\pi r^(2) h)/(\pi h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cr2wyvk2a25lrcjwupznyrjq404vrtz1f0.png)
![r^(2) = (3V)/(\pi h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hrd2ta3lapyatou05vjw316cr4qapo9j8s.png)
Take the square root of both sides of the equation
![\sqrt{r^(2) } = \sqrt{(3V)/(\pi h) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/4agpdey6eue5p47sshlcrv9hjr2fkqakro.png)
![r = \sqrt{(3V)/(\pi h) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/wvtoyctim40z13ueq99a61z2pyiu0efck7.png)
Putting in the values given,
![r = \sqrt{(3 * 65.94 )/(3.14h) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/mrpo9i850ick7mk695ddywpvfx3ctdl9ju.png)
![r = \sqrt{(3 * 21 )/(h)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/4xcbomj92ao3f52a9s3hjtg4tki1z3v4i4.png)
![r = \sqrt{(63 )/(h) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/16xz282z3qeskljl5juhsroxwkcclephnu.png)
![r = \sqrt{(9 * 7)/(h) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/vmpt68wu790pjgcigjrrn58k378pvmtuu2.png)
![r = (3√(7) )/(√(h) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/ot60lo0576ycadhoocrkhn87qqqcf07m4e.png)
Hope this helps :))