219k views
3 votes
Find the value of tan(A+B)

Find the value of tan(A+B)-example-1

1 Answer

7 votes

Answer:


\tan (A+B) =-(680)/(111)

Explanation:


\tan A=(12)/(5)


\cos B=(45)/(53)\implies \sec B=(53)/(45)

Now, by trigonometric identity:


\tan^2 B =\sec^2B-1


\implies \tan^2 B =\bigg((53)/(45)\bigg)^2-1


\implies \tan^2 B =((53)^2-(45)^2)/((45)^2)


\implies \tan^2 B =((28)^2)/((45)^2)


\implies \tan B =\pm\sqrt{((28)^2)/((45)^2)}


\implies \tan B =\pm(28)/(45)

It is given that: Angles A and B are in quadrant I.

---------------------> Angles A and B would be positive.


\implies \tan B =(28)/(45)

Next,


\tan (A+B) =(\tan A +\tan B)/(1-\tan A \tan B)


\implies \tan (A+B) =((12)/(5) +(28)/(45))/(1-\bigg((12)/(5)\bigg) \bigg((28)/(45)\bigg))


\implies \tan (A+B) =((108)/(45) +(28)/(45))/(1-\bigg((336)/(225)\bigg))


\implies \tan (A+B) =((136)/(45))/(\bigg((225-336)/(225)\bigg))


\implies \tan (A+B) =((136)/(45))/((-111)/(225))


\implies \tan (A+B) =-(680)/(111)

User Anthony L
by
7.6k points