85.0k views
5 votes
Evaluate the integral ∫2032x2+4dx. Your answer should be in the form kπ, where k is an integer. What is the value of k? (Hint: darctan(x)dx=1x2+1 ) k= 4 (b) Now, lets evaluate the same integral using power series. First, find the power series for the function f(x)=32x2+4. Then, integrate it from 0 to 2, and call it S. S should be an infinite series ∑[infinity]n=0an . What are the first few terms of S?

User IMath
by
4.7k points

1 Answer

1 vote

Here is the correct computation of the question;

Evaluate the integral :


\int\limits^2_0 \ (32)/(x^2 +4) \ dx

Your answer should be in the form kπ, where k is an integer. What is the value of k?

(Hint:
(d \ arc \ tan (x))/(dx) =(1)/(x^2 + 1))

k = 4

(b) Now, lets evaluate the same integral using power series.


f(x) = (32)/(x^2 +4)

Then, integrate it from 0 to 2, and call it S. S should be an infinite series

What are the first few terms of S?

Answer:

(a) The value of k = 4

(b)


a_0 = 16\\ \\ a_1 = -4 \\ \\ a_2 = (12)/(5) \\ \\a_3 = - (12)/(7) \\ \\ a_4 = (12)/(9)

Explanation:

(a)


\int\limits^2_0 (32)/(x^2 + 4) \ dx


= 32 \int\limits^2_0 (1)/(x+4)\ dx


=32 ((1)/(2) \ arctan ((x)/(2)))^2__0


= 32 ( (1)/(2) arctan ((2)/(2))- (1)/(2) arctan ((0)/(2)))


= 32 ( (1)/(2)arctan (1) - (1)/(2) arctan (0))


= 32 ( (1)/(2)((\pi)/(4))- (1)/(2)(0))


= 32 ((\pi)/(8)-0)


= 32 ( ((\pi)/(8)))


= 4 \pi

The value of k = 4

(b)
(32)/(x^2+4)= 8 - (3x^2)/(2^1)+ (3x^4)/(2^3)- (3x^6)/(2x^5)+ (3x^8)/(2^7) -... \ \ \ \ \ (Taylor\ \ Series)


\int\limits^2_0 (32)/(x^2+4)= \int\limits^2_0 (8 - (3x^2)/(2^1)+ (3x^4)/(2^3)- (3x^6)/(2x^5)+ (3x^8)/(2^7) -...) dx


S = 8 \int\limits^2_0dx - (3)/(2^1) \int\limits^2_0 x^2 dx + (3)/(2^3)\int\limits^2_0 x^4 dx - (3)/(2^5)\int\limits^2_0 x^6 dx+ (3)/(2^7)\int\limits^2_0 x^8 dx-...


S = 8(x)^2_0 - (3)/(2^1*3)(x^3)^2_0 +(3)/(2^3*5)(x^5)^2_0- (3)/(2^5*7)(x^7)^2_0+ (3)/(2^7*9)(x^9)^2_0-...


S= 8(2-0)-(1)/(2^1)(2^3-0^3)+(3)/(2^3*5)(2^5-0^5)- (3)/(2^5*7)(2^7-0^7)+(3)/(2^7*9)(2^9-0^9)-...


S= 8(2-0)-(1)/(2^1)(2^3)+(3)/(2^3*5)(2^5)- (3)/(2^5*7)(2^7)+(3)/(2^7*9)(2^9)-...


S = 16-2^2+(3)/(5)(2^2) -(3)/(7)(2^2) + (3)/(9)(2^2) -...


S = 16-4 + (12)/(5)- (12)/(7)+ (12)/(9)-...


a_0 = 16\\ \\ a_1 = -4 \\ \\ a_2 = (12)/(5) \\ \\a_3 = - (12)/(7) \\ \\ a_4 = (12)/(9)

User Egor Stambakio
by
4.0k points