Answer:
The maximum possible error of in measurement of the angle is
![d\theta_1 =(14.36p)^o](https://img.qammunity.org/2021/formulas/mathematics/college/sr88mvv6ronw7t62eewmwk2yksur4qvs9r.png)
Explanation:
From the question we are told that
The angle of elevation is
![\theta_1 = 15 ^o = (\pi)/(12)](https://img.qammunity.org/2021/formulas/mathematics/college/nxcyvxa9sevck4pj6wbu6nn2em682xrd5o.png)
The height of the tree is h
The distance from the base is D
h is mathematically represented as
Note : this evaluated using SOHCAHTOA i,e
![tan\theta = (h)/(D)](https://img.qammunity.org/2021/formulas/mathematics/college/891ujxysoebeov48mtbg69pfidp9t7qo8f.png)
Generally for small angles the series approximation of
![tan \theta \ is](https://img.qammunity.org/2021/formulas/mathematics/college/2yxe7p7jwdtlmwt9et3ge5delffld0nr2r.png)
![tan \theta = \theta + (\theta ^3 )/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/x89v1t0i5qba5vix3x1x8ne4udt1s5q1u2.png)
So given that
![\theta = 15 \ which \ is \ small](https://img.qammunity.org/2021/formulas/mathematics/college/se9i6g3gr3dsalruxifcior13um92786ew.png)
![h = D (\theta + (\theta^3)/(3) )](https://img.qammunity.org/2021/formulas/mathematics/college/69y174xu8ugfdzcvr1uvy6inul2e0bgfgx.png)
![dh = D (1 + \theta^2) d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/q8x269zrvolofl0gzk6gy8ylxlqxchyt5a.png)
=>
![(dh)/(h) = (1 + \theta ^2)/(\theta + (\theta^3)/(3) ) d \theta](https://img.qammunity.org/2021/formulas/mathematics/college/ts6ts2kcmv7m4u9s7pkb9e10sz91uigofv.png)
Now from the question the relative error of height should be at most
%
=>
![(dh)/(h) = \pm p](https://img.qammunity.org/2021/formulas/mathematics/college/y1l6jd9scw4btdz36gxx86cjkbd4ym2cfv.png)
=>
![(1 + \theta ^2)/(\theta + (\theta^3)/(3) ) d \theta = \pm p](https://img.qammunity.org/2021/formulas/mathematics/college/nsfe16kjer3q51785lk3hq29r22tc64iho.png)
=>
![d\theta = \pm (\theta + (\theta^3)/(3) )/(1+ \theta ^2) * \ p](https://img.qammunity.org/2021/formulas/mathematics/college/4fg0v466du272ta2k3er4kr14bz8zmsdea.png)
So for
![\theta_1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rumz7vecxeq3okbuw28qynbmpqy21j8qpd.png)
![d\theta_1 = \pm (\theta_1 + (\theta^3_1 )/(3) )/(1+ \theta_1 ^2) * \ p](https://img.qammunity.org/2021/formulas/mathematics/college/bne8n198jvvf8b6k5s88o4wyzxghjlxug9.png)
substituting values
![d [(\pi)/(12) ] = \pm ([(\pi)/(12) ] + ([(\pi)/(12) ]^3 )/(3) )/(1+ [(\pi)/(12) ] ^2) * \ p](https://img.qammunity.org/2021/formulas/mathematics/college/pqdmx1nfsnz2z6u4lvgii4vnxeiknxlz4r.png)
=>
![d\theta_1 = 0.25 p](https://img.qammunity.org/2021/formulas/mathematics/college/o2bwl8p9oqm6mqhnsh50fr82ffbjf2j8hr.png)
Converting to degree
![d\theta_1 = (0.25* 57.29) p](https://img.qammunity.org/2021/formulas/mathematics/college/30is946lbm18xqc9cih4oelvu5utp8qbbc.png)
![d\theta_1 =(14.36p)^o](https://img.qammunity.org/2021/formulas/mathematics/college/sr88mvv6ronw7t62eewmwk2yksur4qvs9r.png)