Answer:
Explanation:
For brand A,
Mean, x1 = (34.36 + 31.26 + 37.36 + 28.52 + 33.14 + 32.74 + 34.34 + 34.33 + 34.95)/9 = 33.44
standard deviation, s1 = √(summation(x - mean)²/n
Summation(x - mean)² = (34.36 - 33.44)^2 + (31.26 - 33.44)^2 + (37.36 - 33.44)^2 + (28.52 - 33.44)^2 + (33.14 - 33.44)^2 + (32.74 - 33.44)^2 + (34.34 - 33.44)^2 + (34.33 - 33.44)^2 + (34.95 - 33.44)^2 = 49.6338
Standard deviation = √(49.6338/9
s1 = 2.35
For brand B,
Mean, x2 = (41.08 + 38.22 + 39.59 + 38.82 + 36.24 + 37.73 + 35.03 + 39.22 + 34.13 + 34.33 + 34.98 + 29.64 + 40.60 )/13 = 36.89
Summation(x - mean)² = (41.08 - 36.89)^2 + (38.22 - 36.89)^2 + (39.59 - 36.89)^2 + (38.82 - 36.89)^2 + (36.24 - 36.89)^2 + (37.73 - 36.89)^2 + (35.03 - 36.89)^2 + (39.22 - 36.89)^2 + (34.13 - 36.89)^2 + (34.33 - 36.89)^2 + (34.98 - 36.89)^2 + (29.64 - 36.89)^2 + (40.60 - 36.89)^2 = 124.5024
Standard deviation = √(124.5024/13
s2 = 3.09
The formula for determining the confidence interval for the difference of two population means is expressed as
Confidence interval = (x1 - x2) ± z√(s²/n1 + s2²/n2)
For a 98% confidence interval, we would determine the z score from the t distribution table because the number of samples are small.
Degree of freedom =
(n1 - 1) + (n2 - 1) = (9 - 1) + (13 - 1) = 20
z = 2.528
x1 - x2 = 33.44 - 36.89 = - 3.45
Margin of error = z√(s1²/n1 + s2²/n2) = 2.528√(2.35²/9 + 3.09²/13) = 2.935
The 98% confidence interval is
- 3.45 ± 2.935