158k views
4 votes
Evaluate the integral
x4 – 2x2 + 4x + 1
x3 – x2 - x + 1
dx

1 Answer

3 votes

Looks like the integral is


\displaystyle\int(x^4-2x^2+4x+1)/(x^3-x^2-x+1)\,\mathrm dx

First simplify the integrand by long division (or however you like):


(x^4-2x^2+4x+1)/(x^3-x^2-x+1)=x+1+(4x)/(x^3-x^2-x+1)

Also notice that


x^3-x^2-x+1=x^2(x-1)-(x-1)=(x^2-1)(x-1)=(x+1)(x-1)^2

Split the last term into partial fractions:


(4x)/((x+1)(x-1)^2)=\frac a{x+1}+\frac b{x-1}+\frac c{(x-1)^2}


4x=a(x-1)^2+b(x+1)(x-1)+c(x+1)


4x=(a+b)x^2+(c-2a)x+a-b+c


\implies\begin{cases}a+b=0\\c-2a=4\\a-b+c=0\end{cases}\implies a=-1,b=1,c=2

So the integral is equivalent to


\displaystyle\int\left(x+1-\frac1{x+1}+\frac1{x-1}+\frac2{(x-1)^2}\right)\,\mathrm dx


=\displaystyle\frac{x^2}2+x-\ln|x+1|-\ln|x-1|-\frac2{x-1}+C


=\displaystyle\frac{x^2}2+x-\ln|x^2-1|-\frac2{x-1}+C

User Heinz
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories