Answer:
x = 0 + 2πk
√2 / 144
Explanation:
cos x + cos 2x + cos 3x + cos 4x + cos 5x = 5
Cosine has a maximum of 1, so the only way 5 cosine terms can add up to 5 is if each one equals 1.
cos x = 1 → x = 0 + 2πk
cos 2x = 1 → x = 0 + πk
cos 3x = 1 → x = 0 + ⅔πk
cos 4x = 1 → x = 0 + ½πk
cos 5x = 1 → x = 0 + ⅖πk
The least common multiple of 2, 1, ⅔, ½, and ⅖ is 2.
So the solution that satisfies all five is x = 0 + 2πk.
lim(x→3) [√(5 + √(2x + 3)) − 2√2] / (x² − 9)
To solve without L'Hopital's rule, multiply by the conjugate of the numerator.
![\lim_(x \to 3) \frac{\sqrt{5+√(2x+3) }\ -\ 2√(2) }{x^(2)-9} * \frac{\sqrt{5+√(2x+3) }\ +\ 2√(2) }{\sqrt{5+√(2x+3) }\ +\ 2√(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kykfcqr4aaqjbim7ohd62bswcvyj459zr3.png)
![\lim_(x \to 3) \frac{5+√(2x+3)\ -\ 8}{(x^(2)-9)(\sqrt{5+√(2x+3) }\ +\ 2√(2))}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jhplxfgotv6fgcvn2k48oz6ew2qy5to72c.png)
![\lim_(x \to 3) \frac{√(2x+3)\ -\ 3}{(x^(2)-9)(\sqrt{5+√(2x+3) }\ +\ 2√(2))}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t79of6cvbiev55bg5psicovbbm2r7yd8ia.png)
Multiply by the conjugate of the new numerator.
![\lim_(x \to 3) \frac{√(2x+3)\ -\ 3}{(x^(2)-9)(\sqrt{5+√(2x+3) }\ +\ 2√(2))} *(√(2x+3)\ +\ 3)/(√(2x+3)\ +\ 3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n9xx3isyhfgfmjjdk0lggn4s8jy9ntanpo.png)
![\lim_(x \to 3) \frac{2x+3-9}{(x^(2)-9)(\sqrt{5+√(2x+3) }\ +\ 2√(2))(√(2x+3)\ +\ 3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2tvvlfrcq881cky8w3gcelxpkzmf7t8z09.png)
![\lim_(x \to 3) \frac{2x-6}{(x^(2)-9)(\sqrt{5+√(2x+3) }\ +\ 2√(2))(√(2x+3)\ +\ 3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x1wx5un0vo5ncokltonfcjbbrqtckb9akx.png)
![\lim_(x \to 3) \frac{2(x-3)}{(x-3)(x+3)(\sqrt{5+√(2x+3) }\ +\ 2√(2))(√(2x+3)\ +\ 3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wuiuoi8q3rk9anr1d6l5eja2elm33pcrwz.png)
![\lim_(x \to 3) \frac{2}{(x+3)(\sqrt{5+√(2x+3) }\ +\ 2√(2))(√(2x+3)\ +\ 3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s183i1v1wo1kon52s0t224pvkz7vyl8kts.png)
![(2)/((6)(4√(2))(6))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d6rqxc344a7zjqykebm94a72atejb5bg85.png)
![(√(2))/(144)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mr2obu5d1dc84dt5a0izmgf7tqpozzigje.png)