9.9k views
3 votes
Simplify this problem

Simplify this problem-example-1

1 Answer

4 votes

Answer:


\boxed{ \frac{ \sqrt[3]{ {x}^(11) } }{4} }

Explanation:


= > \frac{ {x}^(4) }{ \sqrt[3]{64x} } \\ \\ = > \frac{ {x}^(4) }{ {(64x)}^{ (1)/(3) } } \\ \\ = > \frac{ {x}^(4) }{ ({64}^{ (1)/(3) } )* ({x}^{ (1)/(3) } )} \\ \\ = > \frac{ {x}^(4) }{ ({( {4}^(3) )}^{ (1)/(3) }) *( {x}^{ (1)/(3) } )} \\ \\ = > \frac{ {x}^(4) }{ ({4}^{ \cancel{3} * \frac{1}{ \cancel{3}} } ) *( {x}^{ (1)/(3) } )} \\ \\ = > \frac{ {x}^(4) }{4 {x}^{ (1)/(3) } } \\ \\ = > \frac{ {x}^{4 - (1)/(3) } }{4} \\ \\ = > \frac{ {x}^{ (12 - 1)/(3) } }{4} \\ \\ = > \frac{ {x}^{ (11)/(3) } }{4} \\ \\ = > \frac{ \sqrt[3]{ {x}^(11) } }{4}

User Ryan Poolos
by
4.5k points