37.1k views
5 votes
Please see attachment

Please see attachment-example-1

1 Answer

3 votes

Answer:

a) The value of absolute minimum value = - 0.3536

b) which is attained at
x = (1)/(√(2) )

Explanation:

Step(i):-

Given function


f(x) = (-x)/(2x^(2) +1) ...(i)

Differentiating equation (i) with respective to 'x'


f^(l) = (2x^(2) +1(-1) - (-x) (4x))/((2x^(2)+1)^(2) ) ...(ii)


f^(l)(x) = (2x^(2)-1)/((2x^(2)+1)^(2) )

Equating Zero


f^(l)(x) = (2x^(2)-1)/((2x^(2)+1)^(2) ) = 0


(2x^(2)-1)/((2x^(2)+1)^(2) ) = 0


2 x^(2)-1 = 0


2 x^(2) = 1


x^(2) = (1)/(2)


x = (-1)/(√(2) ) , x = (1)/(√(2) )

Step(ii):-

Again Differentiating equation (ii) with respective to 'x'


f^(ll)(x) = ((2x^(2) +1)^(2) (4x) - 2(2x^(2) +1) (4x)(2x^(2)-1) )/((2x^(2)+1)^(4) )

put


x = (1)/(√(2) )


f^(ll) (x) > 0

The absolute minimum value at
x = (1)/(√(2) )

Step(iii):-

The value of absolute minimum value


f(x) = (-x)/(2x^(2) +1)


f((1)/(√(2) ) ) = (-(1)/(√(2) ) )/(2((1)/(√(2) ) )^(2) +1)

on calculation we get

The value of absolute minimum value = - 0.3536

Final answer:-

a) The value of absolute minimum value = - 0.3536

b) which is attained at
x = (1)/(√(2) )

User Mesozoic
by
8.0k points