Answer:
(a)
- The vertices are at (0,-5) and (0,5).
- The coordinates of the foci are (0,-3) and (0,3).
- Eccentricity=3/5
(b)Length of the major axis=10
Explanation:
When the major axis of an ellipse is parallel to the y-axis.The standard form of the equation of an ellipse is given as:
![(x^2)/(b^2)+(y^2)/(a^2)=1](https://img.qammunity.org/2021/formulas/mathematics/college/pw735t7zmdcwdwjcm364lyg78r0gbuhb34.png)
Given the equation:
![(x^2)/(16)+(y^2)/(25)=1](https://img.qammunity.org/2021/formulas/mathematics/college/sfyafupp4xx8dyzjuuxebf91hxnuxqfhsh.png)
(I)The coordinates of the vertices are
![(0, \pm a)](https://img.qammunity.org/2021/formulas/mathematics/college/pjmf3j39351hsid8cjotx18x317oukf4mr.png)
![a^2=25\\a^2=5^2\\a=5](https://img.qammunity.org/2021/formulas/mathematics/college/gg35m41zfz6yjsiy5kjb55zxvk2bm29cw9.png)
Therefore, the vertices are at (0,-5) and (0,5).
(II)The coordinates of the foci are
![(0, \pm c)$ where c^2=a^2-b^2](https://img.qammunity.org/2021/formulas/mathematics/college/bt97x2dmxfr1ifkniiymtvdvf0sxn1arkx.png)
![c^2=a^2-b^2\\c^2=25-16\\c^2=9\\c=3](https://img.qammunity.org/2021/formulas/mathematics/college/eix8gsmx29v29lg7jywy196g1ado0outsl.png)
The coordinates of the foci are (0,-3) and (0,3).
(III)Eccentricity
This is the ratio of the distance c between the center of the ellipse and each focus to the length of the semi major axis.
Simply put, Eccentricity =c/a
Eccentricity=3/5
(b)Length of the major axis
The length of the major axis=2a
=2(5)=10.