Answer:
9.1 Inches
Explanation:
Length of the proposed box=11 Inches
Width of the proposed box=8 Inches
Required Volume,
![V \geq 800 $ cubic inches.](https://img.qammunity.org/2021/formulas/mathematics/college/1psn174fw7ypr4oyc84sqbjtt8sz8mcdbo.png)
Volume of a Rectangular Prism =Length X Width X Height
Therefore:
![800\\11*8*Height\geq 800\\88*Height \geq 800\\$Divide both sides by 88\\Height \geq 800 / 88\\Height \geq 9.\overline{09}$ inches](https://img.qammunity.org/2021/formulas/mathematics/college/yi5fdpzo7zyxutpw8bmblvnyoidln24vp0.png)
Therefore, the minimum height to the nearest tenth of an inch is 9.1 Inches.