Answer:
12(cos120°+isin120°)
Explanation:
The rectangular form of a complex number is expressed as z = x+iy
where the modulus |r| =
and the argument
![\theta = tan^(-1)(y)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/u38wwlbnv0a2o46q50j65z6trl31jalx79.png)
In polar form, x =
![rcos\theta \ and\ y = rsin\theta](https://img.qammunity.org/2021/formulas/mathematics/college/oigh233lg8jmadlconiu44iblp1bchemne.png)
![z = rcos\theta+i(rsin\theta)\\z = r(cos\theta+isin\theta)](https://img.qammunity.org/2021/formulas/mathematics/college/n9oj2d5vaevbqdiwvypcuigfwfcp4z7rn6.png)
Given the complex number,
. To express in trigonometric form, we need to get the modulus and argument of the complex number.
![r = \sqrt{(-6)^(2)+(6√(3) )^(2)}\\r = √(36+(36*3)) \\r = √(144)\\ r = 12](https://img.qammunity.org/2021/formulas/mathematics/college/a5p2zlgm46ervi11ut5ipvsgk7afb08d35.png)
For the argument;
![\theta = tan^(-1) (6√(3) )/(-6) \\\theta = tan^(-1)-√(3) \\\theta = -60^(0)](https://img.qammunity.org/2021/formulas/mathematics/college/cxjr6e27nz9ere0aag82ect5829ghyhkx3.png)
Since tan is negative in the 2nd and 4th quadrant, in the 2nd quadrant,
![\theta =180-60\\\theta = 120^(0)](https://img.qammunity.org/2021/formulas/mathematics/college/6ts02pw53h0qnvhke4gjh9aqgwkb9i6xhk.png)
z = 12(cos120°+isin120°)
This gives the required expression.