44.3k views
5 votes
Given f(x)=4x2+19x−5 and g(x)=4x2−x. What is (fg)(x)?

User Luwes
by
3.8k points

2 Answers

2 votes

Answer:


\boxed{(fg)(x) = 16 {x}^(4) + 72 {x}^(3) - 39 {x}^(2) + 5x}

Given:


f(x) = 4{x}^(2) + 19x - 5 \\ \\ g(x) = {4x}^(2) - x

To Find:


(fg)(x) = f(x) * g(x)

Explanation:


= > f(x) * g(x) = (4 {x}^(2) + 19x - 5)( {4x}^(2) - x ) \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 4 {x}^(2) (4 {x}^(2) - x) + 19x(4 {x}^(2) - x) - 5(4 {x}^(2) - x) \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =16 {x}^(4) - 4 {x}^(3) + 76 {x}^(3) - 19 {x}^(2) - 20 {x}^(2) + 5x\\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =16 {x}^(4) + 72 {x}^(3) - 39 {x}^(2) + 5x

User Sayem Siam
by
4.4k points
6 votes

Answer:

Explanation:

Given f(x)=4x2+19x−5 and g(x)=4x2−x. What is (fg)(x)?-example-1
User Punitcse
by
4.4k points