If the pattern continues, so that each term is separated by a distance of 3, then the sequence is given by the recursive rule
![\begin{cases}a_1=1\\a_n=a_(n-1)+3&\text{for }n>1\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/q4y333oppngp56q0311m72rk2im7vu0grw.png)
From this definition, we can write
in terms of
:
![a_2=a_1+3](https://img.qammunity.org/2021/formulas/mathematics/college/qi2a2cbtsw9zirvqntw6eregt9mzurlxpp.png)
![a_3=a_2+3=(a_1+3)+3=a_1+2\cdot3](https://img.qammunity.org/2021/formulas/mathematics/college/m7ca82valqil0m1cdnsx1vh3w0aw3sev2n.png)
![a_4=a_3+3=(a_1+2\cdot3)+3=a_1+3\cdot3](https://img.qammunity.org/2021/formulas/mathematics/college/ihj78lkmhsfyyj8ogurm17rnby44ex7d95.png)
![a_5=a_4+3=(a_1+3\cdot3)+3=a_1+4\cdot3](https://img.qammunity.org/2021/formulas/mathematics/college/w1rhsqc124m6o7jxc3nuxb2jbm1z23kfm2.png)
and so on, up to
![a_n=a_1+(n-1)\cdot3](https://img.qammunity.org/2021/formulas/mathematics/college/ev90tpe5axpkehvj3fhg0yw5i0zf1vm0fd.png)
(notice how the subscript on a and coefficient on 3 add up to n)
or
![a_n=1+3(n-1)=3n-2](https://img.qammunity.org/2021/formulas/mathematics/college/735gqu6qerbaoq5aazr5s54nxp0h02eo0e.png)