141k views
5 votes
Which sum or difference identity could be used to prove that cos(270degrees-feta)=-sinfeta is an identity?

2 Answers

4 votes

Answer:

B. cos270°cosθ + sin270°sinθ

Explanation:

got it right on edge :)

User Vito
by
4.5k points
5 votes

Answer:

cos (270° - θ) = -sinθ

Explanation:

Explanation:-

Trigonometry sum or difference formula

Cos (A+B) = cos A cos B - sin A sin B

Cos (A+B) = cos A cos B + sin A sin B

Given cos (270° - θ) = cos 270° cosθ + sin 270° sinθ

Cos 270° = cos (180°+90°) = -cos 90° = 0

sin 270° = sin (180°+90°) = -sin 90° = -1

now

cos (270° - θ) = cos 270° cosθ + sin 270° sinθ

cos (270° - θ) = (0) cosθ + (-1) sinθ = -sinθ

Final answer:-

cos (270° - θ) = -sinθ

Which sum or difference identity could be used to prove that cos(270degrees-feta)=-sinfeta-example-1
Which sum or difference identity could be used to prove that cos(270degrees-feta)=-sinfeta-example-2
User SvenL
by
4.0k points