Answer: (0.186, 0.298)
Explanation:
The formula to find the confidence interval for the difference of the population proportion is given by :-
... (i)
, where
Sample size of population 1.
Sample size of population 2.
Sample proportion of population 1.
= Sample proportion of population 2.
z* = Critical z-value corresponding to confidence interval
As per given , we have
![n_1=n_2=500](https://img.qammunity.org/2021/formulas/mathematics/college/566vtb1xst57f67i9eurwricuhs2821ldb.png)
![\hat{p}_1=(378)/(500)=0.756\\\hat{p}_2=(256)/(500)=0.512](https://img.qammunity.org/2021/formulas/mathematics/college/jqc8tzis4fhlo46oxzfb8jpvw8j4wftm4d.png)
Critical value corresponds to 95% confidence interval = 1.96
Put all these values , in (i) , we get
![0.756-0.512\pm 1.96\sqrt{(0.756(1-0.756))/(500)+(0.512(1-0.512))/(500)}\\\\=0.244\pm1.96(√(0.00086864))\\\\=0.244\pm1.96(0.0294727)\\\\=0.244\pm0.0577665\\\\=(0.244-0.0577664,\ 0.24+0.0577664)\\\\=(0.1862336,\ 0.2977664)\approx(0.186,\ 0.298)](https://img.qammunity.org/2021/formulas/mathematics/college/nu6pex9xq1qkz1zbgzh50lco9mmt8tcrsv.png)
Hence, the 95% confidence interval for the difference of the population proportions= (0.186, 0.298)