Answer:
Discriminant
![b^2-4ac\quad\textsf{when}\:ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ku2btl8idftsr3jj7mteoe7eleri3tfk7z.png)
![\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real solutions}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pgk5lrsyt4u8jp30535us1ssjtstkg11s1.png)
![\textsf{when }\:b^2-4ac=0 \implies \textsf{one real solution}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bcopfyxs6hlvvqjwd3h16ey56bws3mypzy.png)
![\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real solutions}](https://img.qammunity.org/2023/formulas/mathematics/high-school/86ztjtvr54esfz3ymg64gsyv7qoqiieef7.png)
------------------------------------------------------------------------------------------------
Question 5
Given function:
![f(x)=3x^2-3x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/sqpt0upllvzibfkksdohjezg0v1fgico54.png)
![\implies a=3, \quad b=-3, \quad c=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/816acwv5jtbrmdxz1erp0ak78g5i19yfk5.png)
Inputting these values into the discriminant:
![\implies \textsf{discriminant}= (-3)^2-4(3)(2)=-15](https://img.qammunity.org/2023/formulas/mathematics/high-school/zojpv9p6bn4lbqi05jhvohyng3ha7eucsd.png)
As -15 < 0 there are no real solutions
------------------------------------------------------------------------------------------------
Question 6
Given function:
![f(x)=x^2-10x+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/74ml0ro68sfmzbngl618h3k6o1frzg5ppb.png)
![\implies a=1, \quad b=-10, \quad c=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/e081rp50mrubz1w0bh3ro8ja0iko6uxzwv.png)
Inputting these values into the discriminant:
![\implies \textsf{discriminant}= (-10)^2-4(1)(1)=96](https://img.qammunity.org/2023/formulas/mathematics/high-school/p859133echbk0oo29t31wtzptsmw5u5q7o.png)
As 96 > 0 there are two real solutions
at
![x=5 \pm 2√(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bwyzszaneew3h9sc5rl4tks5uu32ct8sze.png)
------------------------------------------------------------------------------------------------
Question 7
Given function:
![f(x)=x^2-4x+4](https://img.qammunity.org/2023/formulas/mathematics/high-school/yomzb5npkfg4nf91dbpg4frjxw9nlxup4g.png)
![\implies a=1, \quad b=-4, \quad c=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/76pnzhfzn0y8ysygiv73spc3ricfqa0g20.png)
Inputting these values into the discriminant:
![\implies \textsf{discriminant}= (-4)^2-4(1)(4)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/elwq40g34uwe3bug5t11fe89nriwdkfb7t.png)
As 0 = 0 there is one real solution
at
![x=2](https://img.qammunity.org/2023/formulas/mathematics/college/6ij5lvx45qkbn22ki7umkb6rdcr9rugcgd.png)