103k views
12 votes
Can anyone help with Discriminants in math??

(“number and types of solutions” is what the rest says)

Can anyone help with Discriminants in math?? (“number and types of solutions” is what-example-1
User Alok P
by
3.5k points

2 Answers

2 votes

#1

  • 3x²-3x+2

D:-

  • b²-4ac
  • (-3)²-4(3)(2)
  • 9-24
  • -15

D<0 so unequal and un real roots

#2

  • b²-4ac
  • (-10)²-4(1)(1)
  • 100-4
  • 96

D>0 so unequal and real roots

#3

  • (-4)²-4(4)(1)
  • 16-16
  • 0

Equal and real roots

User Ermin Dedovic
by
3.4k points
4 votes

Answer:

Discriminant


b^2-4ac\quad\textsf{when}\:ax^2+bx+c=0


\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real solutions}


\textsf{when }\:b^2-4ac=0 \implies \textsf{one real solution}


\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real solutions}

------------------------------------------------------------------------------------------------

Question 5

Given function:
f(x)=3x^2-3x+2


\implies a=3, \quad b=-3, \quad c=2

Inputting these values into the discriminant:


\implies \textsf{discriminant}= (-3)^2-4(3)(2)=-15

As -15 < 0 there are no real solutions

------------------------------------------------------------------------------------------------

Question 6

Given function:
f(x)=x^2-10x+1


\implies a=1, \quad b=-10, \quad c=1

Inputting these values into the discriminant:


\implies \textsf{discriminant}= (-10)^2-4(1)(1)=96

As 96 > 0 there are two real solutions

at
x=5 \pm 2√(6)

------------------------------------------------------------------------------------------------

Question 7

Given function:
f(x)=x^2-4x+4


\implies a=1, \quad b=-4, \quad c=4

Inputting these values into the discriminant:


\implies \textsf{discriminant}= (-4)^2-4(1)(4)=0

As 0 = 0 there is one real solution

at
x=2

User Ssmir
by
2.9k points