57.3k views
0 votes
) The angular acceleration of the disk is defined by ???? = 3t 2 + 12 rad/s, where t is in seconds. If the disk is originally rotating at ????0 = 12 rad/s. a) Determine the angular motion when t = 2 s. b) Determine the magnitude of the velocity of point A on the disk when t = 2 s. c) Determine the normal and tangential components of acceleration of point A on the disk when t = 2 s.

User Padmalcom
by
4.5k points

1 Answer

4 votes

Answer:

a)
\theta = 52\,rad, b)
v_(A) = 44\cdot r \,(m)/(s), c)
a_(A,n) = 1936\cdot r\,(m)/(s^(2)),
a_(A,t) = 24\cdot r\,(m)/(s^(2))

Step-by-step explanation:

a) The angular motion is obtained by integrating the angular acceleration function twice:


\alpha = 3\cdot t^(2) + 12


\omega = t^(3) + 12\cdot t + 12


\theta = (1)/(4)\cdot t^(4) + 6\cdot t^(2) + 12\cdot t

The angular motion when t = 2 s. is:


\theta = (1)/(4)\cdot (2\,s)^(4) + 6\cdot (2\,s)^(2) + 12\cdot (2\,s)


\theta = 52\,rad

b) Let be
r the distance between A and the rotation axis, measured in meters. The magnitude of the angular velocity when t = 2 s. is:


\omega = (2\,s)^(3) + 12\cdot (2\,s) + 12


\omega = 44\,(rad)/(s)

Finally, the magnitude of the velocity is:


v_(A) = 44\cdot r \,(m)/(s)

c) The angular acceleration of the disk when t = 2 s. is:


\alpha = 3\cdot (2\,s)^(2) + 12


\alpha = 24\,(rad)/(s^(2))

Lastly, the normal and tangential components at point A are, respectively:


a_(A,n) = \omega^(2)\cdot r


a_(A,n) = \left(44\right)^(2)\cdot r


a_(A,n) = 1936\cdot r\,(m)/(s^(2))


a_(A,t) = \alpha \cdot r


a_(A,t) = 24\cdot r\,(m)/(s^(2))

User Rohit Bansal
by
5.0k points