62.3k views
0 votes
50 points each question. Please help. How do I solve?

50 points each question. Please help. How do I solve?-example-1

2 Answers

8 votes


~~~~~\ln(xy) +4x = 45\\\\\\\implies (d)/(dx) \left[\ln(xy) +4x \right] = (d)/(dx) ( 45)\\\\\\\implies (1)/(xy) \cdot (d)/(dx) (xy) + 4 = 0\\\\\\\implies \frac 1{xy} \left( x(dy)/(dx) + y \right) +4 =0\\\\\\\implies x(dy)/(dx) + y + 4xy=0\\\\\\\implies x (dy)/(dx) =-y-4xy\\\\\\\implies (dy)/(dx) = \frac{-y-4xy}x

User Nitesh Kumar
by
4.1k points
1 vote

Answer:


(dy)/(dx)=-y\left(4+(1)/(x)\right)

or written in rational form:


(dy)/(dx)=(-4xy-y)/(x)

Explanation:


\ln(xy)+4x=45


\textsf{Apply the product log law}\quad\ln(ab)=\ln(a)+\ln(b):


\implies \ln(x)+\ln(y)+4x=45


\textsf{Add}\:(d)/(dx)\:\textsf{in front of each term}:


\implies (d)/(dx)\ln(x)+(d)/(dx)\ln(y)+(d)/(dx)4x=(d)/(dx)45


\textsf{Differentiate the}\: x \: \textsf{terms and constant terms first}:


\implies (1)/(x)+(d)/(dx)\ln(y)+4=0


\textsf{When differentiating with respect to}\:y,\: \textsf{differentiate and add}\: (dy)/(dx):


\implies (1)/(x)+(1)/(y)(dy)/(dx)+4=0


\textsf{Rearrange to make}\:(dy)/(dx)\:\textsf{the subject}:


\implies (1)/(y)(dy)/(dx)=-4-(1)/(x)


\implies (dy)/(dx)=y\left(-4-(1)/(x)\right)


\implies (dy)/(dx)=-y\left(4+(1)/(x)\right)

If you want it in rational form, then:


\implies (dy)/(dx)=-4y-(y)/(x)


\implies (dy)/(dx)=(-4xy-y)/(x)

User TeaWolf
by
4.5k points