11.1k views
5 votes
Air at 200 kPa, 528C, and a velocity of 355 m/s enters an insulated duct of varying cross-sectional area. The air exits at 100 kPa, 82°C. At the inlet, the cross-sectional area is 6.57 2 c m 2 .

User Slandau
by
5.3k points

1 Answer

1 vote

Answer:


\bf a)-v_2=220.11\;m/s


\bf b)-\sigma_(cv)=0.337\;kw/k

Step-by-step explanation:

a) - Taking enthalpy from the ideal air structure that is :

Given,


T_1=52\° C


Then,\;\;\;\;\;\; T_1=325 k


And,\;\;\;\;\;\;\;\;h_1=325.31\; KJ/kg


T_2=82^\circ C


Then,\;\;\;\;\;\; T_2=355 k


And,\;\;\;\;\;\;\;\;h_2=355.535\; KJ/kg

Then, we have to apply the equation of the energy rate balance.

After applying that we have:


m\left [\left (h_1-h_2 \right )+(v_1^2-v_2^2)/(2) \right ]=0


(v_1^2-v_2^2)/(2) =h_2-h_1


v_2^2=\left(V_1^2-2\right)\left(h_2-h_1\right)

Then, we have to put values in the equation.


v_2^2=\left(330^2\right)-2 \left(355.535-325.31\right)*10^3


v_2=√(108900-60450)=220.11\;m/s

b) - Here, we have to apply the equation of the continuity.


m=(A_1V_1)/(V_1)


Then,\;\;\;\;\;\;\;\;\;\;\;=(A_1V_1)/((RT_1)/(P_1) )


=(P_1)/(RT_1) * A_1V_1

Then, we have to put values in the equation.


=(200* 10^3)/(287\left(52+273\right)) * 16.57 * 10^(-4)*330=1.17\:kg/s

Then, the values are :


T_1=52^\circ C=325k


S_1=1.78249\: KJ/s

and,


T_2=82^\circ C=355k


S_2=1.871255\: KJ/s


\sigma_(cv)=m[S_2-S_1-R\;ln((P_2)/(P_1)) ]

Then, we have to put values in the equation.


=1.17\left[1.871255-1.78249-0.287\;ln\left((100)/(200) \right)\right]


\sigma_(cv)=0.337\;KW/k

User Neil Trodden
by
4.8k points