103k views
1 vote
Line integral calculus. Help!!

Line integral calculus. Help!!-example-1

1 Answer

4 votes

The path
C_2 is parameterized by


\mathbf r(t)=(x(t),y(t))=((\cos t,\sin t))/(1+e^t)

so that substituting
x(t),y(t) into
\mathbf F gives


\mathbf F(x(t),y(t))=\frac{(\cos t,\sin t)}{(1+e^t)\sqrt{1-\frac1{(1-e^t)^2}}}

Compute the differential of
\mathbf r(t):


\mathrm d\mathbf r=((-\sin t-e^t(\cos t+\sin t),\cos t+e^t(\cos t-\sin t)))/((1+e^t)^2)\,\mathrm dt

The line integral then reduces to


\displaystyle\int_(C_2)\mathbf F\cdot\mathrm d\mathbf r=\int_0^\infty-\frac{e^t}{(1+e^t)^3\sqrt{1-\frac1{(1+e^t)^2}}}\,\mathrm dt=-\int_0^\infty(e^t)/((1+e^t)^2√((1+e^t)^2-1))\,\mathrm dt

To compute the integral, substitute
s=1+e^t and
\mathrm ds=e^t\,\mathrm dt, so the integration domain changes to the interval
[2,\infty).


\displaystyle\int_(C_2)\mathbf F\cdot\mathrm d\mathbf r=-\int_2^\infty(\mathrm ds)/(s^2√(s^2-1))

Then substitute
s=\sec r and
\mathrm ds=\sec r\tan r\,\mathrm dr. Note that in order for this substitution to be reversible, we restrict
r to be between -π/2 and π/2, so that the integration domain changes to
\left[\frac\pi3,\frac\pi2\right).


\displaystyle\int_(C_2)\mathbf F\cdot\mathrm d\mathbf r=-\int_(\pi/3)^(\pi/3)(\sec r\tan r)/(\sec^2r√(\sec^2r-1))\,\mathrm dr=-\int_(\pi/3)^(\pi2)\cos r\,\mathrm dr=\boxed{-1+\frac{\sqrt3}2}

User Tashina
by
4.8k points