29.1k views
0 votes
Element X decays radioactively with a half life of 13 minutes. If there are 530 grams of Element X, how long, to the nearest tenth of a minute, would it take the element to decay to 11 grams? y = a * (.5) ^ (1/7)

User Eyvind
by
4.2k points

2 Answers

5 votes

Answer:

Its actually 72.7

Explanation:

User Totalcruise
by
4.6k points
4 votes

Answer:


t \approx 50.4\,min

Explanation:

The time constant of the element X is:


\tau = (13\,min)/(\ln 2)


\tau = 18.755\,min

The decay function has the following form:


(m)/(m_(o)) = e^{-(t)/(\tau) }


t = -\tau \cdot \ln (m)/(m_(o))


t = -(13\,min)\cdot \ln \left((11\,g)/(530\,g) \right)


t \approx 50.4\,min

User Pseudopeach
by
4.8k points