Answer:
The calculated value Z = 1.8368 < 1.96 at 0.05 level of significance
The null hypothesis is accepted
The samples have been drawn from the same Population
Explanation:
Step(i):-
Given first sample size 'n₁' = 49
Mean of the first sample 'x₁⁻ = 609.86
Standard deviation of the sample S₁ = 55.96 calories
Given first sample size 'n₂' = 78
Mean of the first sample 'x₂⁻ = 641.02
Standard deviation of the sample S₂ = 109.14 calories
Step(ii):-
Null hypothesis : H₀: x₁⁻ = x₂⁻
Alternative Hypothesis : H₁: x₁⁻ ≠ x₂⁻
Level of significance ∝ = 0.05
Test statistic
![Z = \frac{x^(-) _(1)-x^(-) _(2) }{\sqrt{S.D^2((1)/(n_(1) ) }+(1)/(n_(2) ) }](https://img.qammunity.org/2021/formulas/mathematics/college/anujht9yysmkr3um78gf7zprc9xcikd283.png)
where
![S.D^(2) = (n_(1) S^2_(1)+ n_(2) S^2_(2) )/(n_(1) + n_(2) -2)](https://img.qammunity.org/2021/formulas/mathematics/college/12wv7fhsoodz9ljtxi5j7b7qmb98grd8pw.png)
![= (49 X (55.96)^2+ 78X(109.14)^2 )/(49 + 78 )](https://img.qammunity.org/2021/formulas/mathematics/college/5pz80hz3c4l3xxkk60xej8ryczx0bcq35y.png)
σ² = 8660.357
Step(iii):-
Test statistic
![Z = \frac{x^(-) _(1)-x^(-) _(2) }{\sqrt{S.D^2((1)/(n_(1) ) }+(1)/(n_(2) ) }](https://img.qammunity.org/2021/formulas/mathematics/college/anujht9yysmkr3um78gf7zprc9xcikd283.png)
![= \frac{ 609.86-641.02 }{\sqrt{8660.357((1)/(49 ) }+(1)/(78 ) ) }](https://img.qammunity.org/2021/formulas/mathematics/college/cz5xkh6x3bxft6lk5testnk16vneos7f76.png)
![Z = (-31.16)/(16.9638) = -1.8368](https://img.qammunity.org/2021/formulas/mathematics/college/flbboubyccvayln6jw9oz9v1vxpcdtaoyu.png)
|Z| = |-1.8368| = 1.8368
The tabulated value Z₀.₉₅ = 1.96
The calculated value = 1.8368 < 1.96 at 0.05 level of significance
The null hypothesis is accepted
Final answer:-
The samples have been drawn from the same Population