65.0k views
5 votes
5 Points

Multiply (x2 + 3x + 4)(3x2 - 2x + 1).
O A. 4x2 + x + 5
O B. 3x4 + 11x + 19x2 + 11x + 4
O C. 3x4 - 6x2 + 4
O D. 344 + 7 x° +7x2 - 5x+ 4

User Booster
by
5.9k points

1 Answer

4 votes

Answer:

To multiply (x^2 + 3x + 4) and (3x^2 - 2x + 1), we need to distribute each term of the first polynomial to every term in the second polynomial:

(x^2 + 3x + 4)(3x^2 - 2x + 1)

= x^2 * (3x^2 - 2x + 1) + 3x * (3x^2 - 2x + 1) + 4 * (3x^2 - 2x + 1)

Now, let's simplify each term:

= 3x^4 - 2x^3 + x^2 + 9x^3 - 6x^2 + 3x + 12x^2 - 8x + 4

Combining like terms:

= 3x^4 + (-2x^3 + 9x^3) + (x^2 - 6x^2 + 12x^2) + (3x - 8x) + 4

= 3x^4 + 7x^3 + 7x^2 - 5x + 4

So, the product of (x^2 + 3x + 4) and (3x^2 - 2x + 1) is 3x^4 + 7x^3 + 7x^2 - 5x + 4.

Therefore, the correct answer is option C: 3x^4 + 7x^3 + 7x^2 - 5x + 4.

User Bbunmp
by
5.6k points