Answer:
85.62 m
168.75 years
101.04 years
Step-by-step explanation:
= Length of ship = 143 m
v = Velocity of ship = 0.8c
c = Speed of light
s = Distance to Boralis orbit = 135 ly
Gamma value
![\gamma=\frac{1}{\sqrt{1-(v^2)/(c^2)}}\\\Rightarrow \gamma=\frac{1}{\sqrt{1-(0.8^2c^2)/(c^2)}}\\\Rightarrow \gamma=1.67](https://img.qammunity.org/2021/formulas/physics/college/xev0rktbpepao0wqdx571r2h2eod3i8er4.png)
Length contraction is given by
![L=(L_0)/(\gamma)\\\Rightarrow L=(143)/(1.67)\\\Rightarrow L=85.62\ m](https://img.qammunity.org/2021/formulas/physics/college/jjuwok457wuvo8tgaaxnb4ey4jstsq3izp.png)
The length is 85.62 m
Time taken
![t=(s)/(v)\\\Rightarrow t=(135)/(0.8)\\\Rightarrow t=168.75\ years](https://img.qammunity.org/2021/formulas/physics/college/dwuuy7gi5lokxjcqxn209vewy4rozm2k86.png)
Time taken from the perspective one Earth is 168.75 years
Time dilation is given by
![t'=(t)/(\gamma)\\\Rightarrow t'=(168.75)/(1.67)\\\Rightarrow t'=101.04\ years](https://img.qammunity.org/2021/formulas/physics/college/ezhto06sgz9j5xrnn9wifxrorl4pxledk0.png)
The time taken from the perspective of the ship is 101.04 years