167,374 views
16 votes
16 votes
Please solve with explanation

Please solve with explanation-example-1
User Evaneus
by
2.6k points

1 Answer

25 votes
25 votes

Answer:


\textsf{a)}\quad y=8x^2+2x-3


\textsf{b)}\quad y=x^2-2x-4

Explanation:

Given information:


x^2+bx+c=0


x_1+x_2=-b


x_1x_2=c

Part (a)


\textsf{If}\quad x_1=\frac12\quad\textsf{and}\quad x_2=-\frac34


\begin{aligned}\implies -b & =\frac12+\left(-\frac34\right)\\ & = \frac24-\frac34\\ & =-\frac14\end{aligned}


\begin{aligned}\implies c & =\frac12 \cdot \left(-\frac34\right)\\ & = (1 (-3))/(2 \cdot 4)\\ & =-\frac38\end{aligned}

Substituting the found values of b and c into
x^2+bx+c=0


\implies x^2+\frac14x-\frac38=0

Multiply both sides by 8 so that coefficients are integers:


\implies 8x^2+2x-3=0

Therefore, the final quadratic equation is:


y=8x^2+2x-3

----------------------------------------------------------------------------------------------

Part (b)


\textsf{If}\quad x_1=1+√(5)\quad\textsf{and}\quad x_2=1-√(5)


\begin{aligned}\implies -b & =(1+√(5))+(1-√(5))\\ & = 1+1+√(5)-√(5)\\ & =2\end{aligned}


\begin{aligned}\implies c & =(1+√(5))(1-√(5))\\ & = 1-√(5)+√(5)-5\\ & =-4\end{aligned}

Substituting the found values of b and c into
x^2+bx+c=0


\implies x^2-2x-4=0

Therefore, the final quadratic equation is:


y=x^2-2x-4

User JBoothUA
by
3.1k points