Answer:
![(14.5-13.9) -1.69 \sqrt{(3.98^2)/(20)+ (4.03^2)/(17)} = -1.63](https://img.qammunity.org/2021/formulas/mathematics/college/z1w3j5wi6sk6goq92ypxfyoh75and0acsb.png)
![(14.5-13.9) +1.69 \sqrt{(3.98^2)/(20)+ (4.03^2)/(17)} = 2.83](https://img.qammunity.org/2021/formulas/mathematics/college/l5tqu86amtu39rhvlcs53j2b0iuh54mvz2.png)
And the confidence interval for this case
![-1.63 \leq \mu_1 -\mu_2 \leq 2.83](https://img.qammunity.org/2021/formulas/mathematics/college/9e1q78kvnfao524uxdu1gs042aiyocz1mb.png)
Explanation:
We know the following info from the problem
sample mean for the group 1
the standard deviation for the group 1
the sample size for group 1
sample mean for the group 2
the standard deviation for the group 2
the sample size for group 2
We have all the conditions satisifed since we have random samples.
We want to construct a confidence interval for the true difference of means and the correct formula for this case is:
![(\bar X_1 -\bar X_2) \pm t_(\alpha/2)\sqrt{(s^2_1)/(n_1) +(s^2_2)/(n_2)}](https://img.qammunity.org/2021/formulas/mathematics/college/djoo2q9ln5padwfnuoi996z75uiaqaiczq.png)
The degrees of freedom are given :
![df = n_1 +n_2- 2 = 20+17-2=35](https://img.qammunity.org/2021/formulas/mathematics/college/36h1k8insjlwz50grak9mxop4gxacomydh.png)
The confidence level is 0.9 or 90% and the significance level is
and
and the critical value for this case is:
![t_(\alpha/2) = 1.69](https://img.qammunity.org/2021/formulas/mathematics/college/dwlc8yoh7ltl78dm3dkz6ri9l9nwssr4f7.png)
And replacing the info given we got:
![(14.5-13.9) -1.69 \sqrt{(3.98^2)/(20)+ (4.03^2)/(17)} = -1.63](https://img.qammunity.org/2021/formulas/mathematics/college/z1w3j5wi6sk6goq92ypxfyoh75and0acsb.png)
![(14.5-13.9) +1.69 \sqrt{(3.98^2)/(20)+ (4.03^2)/(17)} = 2.83](https://img.qammunity.org/2021/formulas/mathematics/college/l5tqu86amtu39rhvlcs53j2b0iuh54mvz2.png)
And the confidence interval for this case
![-1.63 \leq \mu_1 -\mu_2 \leq 2.83](https://img.qammunity.org/2021/formulas/mathematics/college/9e1q78kvnfao524uxdu1gs042aiyocz1mb.png)