Answer:
The mass of the sample after six days will be of 319.24 grams.
Explanation:
The exponential growth model for the mass of a substance after t days is:
![M(t) = M(0)e^(rt)](https://img.qammunity.org/2021/formulas/mathematics/college/ks581yoq914a3tovb0956mngedbcni09im.png)
In which M(0) is the initial mass and r is the increase rate, as a decimal.
A sample increases continuously at a relative rate of 11% per day.
This means that
![r = 0.11](https://img.qammunity.org/2021/formulas/mathematics/college/nnvbqkejy2inrrjwkx1f1ho8p2dt4nvbu6.png)
Find the mass of the sample after six days if there were 165 grams of the substance present at the beginning of the study.
This is M(6) when M(0) = 165.
![M(t) = M(0)e^(rt)](https://img.qammunity.org/2021/formulas/mathematics/college/ks581yoq914a3tovb0956mngedbcni09im.png)
![M(6) = 165e^(0.11*6)](https://img.qammunity.org/2021/formulas/mathematics/college/x5nectdmpg54bpw4jfh1rrixplg0nobzsy.png)
![M(6) = 319.24](https://img.qammunity.org/2021/formulas/mathematics/college/1pgb1lfbk1bixkk6siupewzetyah8ly9e2.png)
The mass of the sample after six days will be of 319.24 grams.