Answer:
a) λ = 2 m
, c) f = 50 Hz
Step-by-step explanation:
When a string is fixed at the ends the wave is reflected at each end, giving rise to a standing wave.
Since we extract them are fixed we have nodes at these points, the wavelength in the string is
fundamental λ = 2L
2nd harmonic λ= 2L / 2
3 harmonica λ= 2L / 3
a and b) from aui we can find the wavelength
λ = 2 3/3
λ = 2 m
c) the speed of the wave is related to the frequency and wavelength
v = λ f
f = v / λ
f = 100/2
f = 50 Hz
d) the acceleration can be found with the equations
a = d²y / dt²
the standing wave equation is
y = 2A sin kx cos wt
a = -2A w² sin kx cos wt
the acceleration is maximum when the cosine is ±1
A = 2A w² sin kx
the oscillatory part indicates that the wave moves, if we make this maximum vine, they relate it to
a = 2A w²
w = 2πf
A = 0.2 cm = 0.002 m
a = 2 0.002 (2π 50)²
a = 98.7 m / s