Answer:
19,531,248
Explanation:
General form of a geometric sequence:
![a_n=ar^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/ap7tka3z5szz7gan7yzwlm8df4q559etdo.png)
(where
is the first term and
is the common difference)
Given geometric series: 8 + 40 + 200 + ... + 15625000
![\implies a_1=8](https://img.qammunity.org/2023/formulas/mathematics/high-school/q5jtzsmil0hkleas35bco5pzswgprgdadu.png)
![\implies a_2=40](https://img.qammunity.org/2023/formulas/mathematics/high-school/fqw6qeidqu6k33t4bwnr01fd49wvhoh74p.png)
![\implies a_3=200](https://img.qammunity.org/2023/formulas/mathematics/high-school/c9c0fwl1d2ci2ewsiiovepz4yo5kgg1ljq.png)
To find the common ratio
, divide consecutive terms:
![\implies r=(a_2)/(a_1)=(40)/(8)=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/7ob0o24dau7wrxjdi8nqj125kmw2xrl29j.png)
Therefore:
![\implies a_n=8(5)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5yc2mpwp7eizskevtbvmkscl5oavk7n5hm.png)
To find n when
:
![\implies 8(5)^(n-1)=15625000](https://img.qammunity.org/2023/formulas/mathematics/high-school/a2e8ko1odztt2v6k7qwtre5fu0p48kwqp4.png)
![\implies (5)^(n-1)=1953125](https://img.qammunity.org/2023/formulas/mathematics/high-school/cw1b3joxlz99vtp5sh57r9uf695hvl8nfp.png)
![\implies \ln (5)^(n-1)=\ln1953125](https://img.qammunity.org/2023/formulas/mathematics/high-school/ep3nnhoh5vatjbhbyh74v6lnsrwtninyux.png)
![\implies (n-1)\ln 5=\ln1953125](https://img.qammunity.org/2023/formulas/mathematics/high-school/hqtkda8edu67zqca9sr337bp6kn1jpze66.png)
![\implies n=(\ln1953125)/(\ln5)+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/v33ov0yer3x6wu6qmws4ual5h183vr6wqw.png)
![\implies n=10](https://img.qammunity.org/2023/formulas/mathematics/high-school/9bhjn40tgpnqh1n0z2ha3v7vex1wxoi1gb.png)
Sum of the first n terms of a geometric series:
![S_n=(a(1-r^n))/(1-r)](https://img.qammunity.org/2023/formulas/mathematics/college/j2nfwy1oio0c2s6k3ckbmfawpobmx6wiqs.png)
Therefore, sum of the first 10 terms:
![\implies S_(10)=(8(1-5^(10)))/(1-5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6w1xts3w74eg9h6lghm93bbldy8ugqq5fz.png)
![\implies S_(10)=19,531,248](https://img.qammunity.org/2023/formulas/mathematics/high-school/jkw84k00np794b5wv2u7rblzejr0o3pzmo.png)