231k views
6 votes

sec {}^(2) a \: . \: cosec {}^(2) a = {tan}^(2)a + {cot}^(2) a + 2 \\

Please help!!!!!!!!!!!!​

User Desu
by
5.5k points

2 Answers

7 votes

Answer:

See below ~

Explanation:

Trigonometric Identies (needed)

  • sec²a = 1 + tan²a
  • cosec²a = 1 + cot²a
  • cot²a = 1/tan²a

Solving

Expanding the LHS

  • sec²a * cosec²a
  • (1 + tan²a) * (1 + cot²a)
  • 1 + tan²a + cot²a + (tan²a * cot²a)
  • 1 + tan²a + cot²a + 1
  • tan²a + cot²a + 2
  • ⇒ RHS

∴ Hence, we have proved the left hand side of the equation is equal to the right hand side.

User Or Smith
by
5.3k points
13 votes

Answer:

Trigonometric identities


\sec^2(\alpha)=1+\tan^2(\alpha)


\csc^2(\alpha)=1+\cot^2(\alpha)


\cot^2(\alpha)=(1)/(\tan^2(\alpha))

Solution


\begin{aligned}\sec^2(\alpha) \cdot \csc^2(\alpha) & = (1+\tan^2(\alpha))(1+\cot^2(\alpha))\\\\ & =1+\cot^2(\alpha)+\tan^2(\alpha)+tan^2(\alpha)\cot^2(\alpha)\\\\ & = 1+\cot^2(\alpha)+\tan^2(\alpha)+\tan^2(\alpha) \cdot (1)/(\tan^2(\alpha))\\\\ & = 1+\cot^2(\alpha)+\tan^2(\alpha)+ (\tan^2(\alpha))/(\tan^2(\alpha))\\\\& = 1+\cot^2(\alpha)+\tan^2(\alpha)+1\\\\& = \tan^2(\alpha)+\cot^2(\alpha)+2\end{aligned}

User Teejay Bruno
by
4.7k points