Answer:
![x^(2) + y^(2) = 100](https://img.qammunity.org/2021/formulas/mathematics/college/tjxatgqjlltitg6bltabwu058zyd4cmsjb.png)
Explanation:
The equation of a circle has the following format:
![(x - x_(0))^(2) + (y - y_(0))^(2) = r^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/dc3aa1fps2x9kkf71vmbe5eihh8jqo5gt0.png)
In which r is the radius(half the diameter) and the centre is the point
![(x_(0), y_(0))](https://img.qammunity.org/2021/formulas/mathematics/college/bcukn78141lp2xh1hn61x6fhb7cbhj80s2.png)
Centered at the origin
This means that
![x_(0) = 0, y_(0) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/uheg87gix4tkp6udlx97qemfr0w8buj99t.png)
Passing through the point(0,10)
The radius is the distance of any point in which the circle passes to the centre.
Using the formula for the distance between two points.
![r = D = \sqrt{(0 - 0)^(2) + (10 - 0)^(2)} = 10](https://img.qammunity.org/2021/formulas/mathematics/college/pg2bgkhpyew34d8vtzitwwr0unocfy8c37.png)
So
![x^(2) + y^(2) = 10^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/6qw4hf3ruz2zzdq49diodxxk7d77vkyd1x.png)
![x^(2) + y^(2) = 100](https://img.qammunity.org/2021/formulas/mathematics/college/tjxatgqjlltitg6bltabwu058zyd4cmsjb.png)