Answer:
![1267.18yd^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4s7u000b0awilj7xnn2fabg25fyy07ptz1.png)
Explanation:
![Formula: \pi r(r+√(h^2+r^2) )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gpt6sfyg63iaaevqhch3s7oagshf80crmj.png)
We need;
![\pi = 3.14\\r=?\\h=18yd](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8y06v925mj4ahqb595ojptqamvlskverxs.png)
We don't have the radius, but we do have the diameter. A diameter is twice the radius. Therefore, we can divide the diameter by 2 in order to obtain the radius.
![(d)/(2)= (24)/(2)=12yd](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m2ybfxcfmmvhf7u171vjlcstsilsb0n4fr.png)
Now plug this info into the formula.
![(3.14)(12yd)[(12yd)+√((18yd)^2+(12yd)^2) ]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6glnxwz5ximcxkwnyz0wseq0vkybcnxalj.png)
Let's solve the square root first.
![(3.14)(12yd)[(12yd)+√(324yd^2+144yd^2) ]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6ebqj66ujxc16qptbs0kjjbtmr0ixq6g90.png)
![(3.14)(12yd)[(12yd)+√(468yd^2) ]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9jqwh7so8ttrvrqsl3ilenmsy5yew070as.png)
![(3.14)(12yd)[(12yd)+√(468yd^2) ]\\(3.14)(12yd)(12yd+21.63yd)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/55cnusxuid0lxoyi3a4w44505uw2tdpqhd.png)
Now solve the sum
![(3.14)(12yd)(33.63yd)\\](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r63y50din9m68dpawv5svz7t7xejihnu9y.png)
Multiply
![1267.18yd^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4s7u000b0awilj7xnn2fabg25fyy07ptz1.png)