Answer:
The cutoff score for recruitment by the statistics department is 675.
Explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
Cutoff score for the top 4%.
100-4 = 96th percentile, which is X when Z has a pvalue of 0.96. So X when Z = 1.75.
The cutoff score for recruitment by the statistics department is 675.