206,943 views
36 votes
36 votes
2. Find the sum of the geometric series.

2. Find the sum of the geometric series.-example-1
User Lxxyx
by
2.6k points

2 Answers

16 votes
16 votes


\\ \rm\Rrightarrow \sum^(18)_(n=1)2n-1


\\ \rm\Rrightarrow 2(1)-1+2(2)-1\dots+2(18)-1

  • a=2-1=1
  • a_18=l=36-1=35

So


\\ \rm\Rrightarrow S_n=(n(a+l))/(2)


\\ \rm\Rrightarrow S_n=(18(1+35))/(2)=9(36)=324

User Vivin Paliath
by
2.9k points
12 votes
12 votes

Answer:

324

Explanation:

** The attachment shows an arithmetic sequence **

Sum of Arithmetic Series formula


S_n=\frac12n(a+l)

where:

  • a = initial term
  • l = last term


a_n=2n-1


\implies a_1=2(1)-1=1


\implies a_(18)=2(18)-1=35


\implies S_(18)=\frac12(18)(1+35)=324

User Tshilidzi Mudau
by
2.6k points