183k views
4 votes
What is the 4th term of the expanded binomial (2x – 3y)^6

User PhilDulac
by
4.7k points

1 Answer

3 votes

Answer:

The 4th term of the expanded binomial is
-4320x^3y^3

Explanation:

Considering:


$ (x+y)^n = \sum_(k=0)^(n) \binom{n}{k} x^(n-k)y^k$


$ (2x-3y)^6 = \sum_(k=0)^(6) \binom{6}{k} (2x)^(6-k)(-3y)^k$

Now, you gotta calculate for every value of
k


$ (2x-3y)^6 = \binom{6}{0} (2x)^(6-0)(-3y)^0 + \binom{6}{1} (2x)^(6-1)(-3y)^1 + \binom{6}{2} (2x)^(6-2)(-3y)^2 + \\ $


$\binom{6}{3} (2x)^(6-3)(-3y)^3 + \binom{6}{4} (2x)^(6-4)(-3y)^4 + \binom{6}{5} (2x)^(6-5)(-3y)^5 + \binom{6}{6} (2x)^(6-6)(-3y)^6 $

I will not write every product, but just solve following the steps:

For
k=0


$\binom{6}{0} (2x)^(6-0)(-3y)^0$


$(6!)/((6-0)!(0!)) (2x)^(6-0)(-3y)^0$


$ (6!)/(6!) \left(2x\right)^(6-0)\cdot 1$


$1\cdot \:1\cdot \left(2x\right)^(6-0)$


$2^6x^6$


64x^6


(2x-3y)^6=64x^6-576x^5y+2160x^4y^2-4320x^3y^3+4860x^2y^4-2916xy^5+729y^6

User AlessandroDP
by
4.5k points