Answer:
![\displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 24](https://img.qammunity.org/2021/formulas/mathematics/college/vq7v05ygtzh82gq526ym425shk0aew2kwg.png)
General Formulas and Concepts:
Calculus
Integration
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/finpzh9immxz5i8n5r71nxs30z9vx92wau.png)
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2021/formulas/mathematics/college/je9vx4nu9fprre5oszklxfozykmiyr5l2m.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/8yomppr4m10wil0api6m0lag5b7hnc5c9y.png)
Explanation:
Step 1: Define
Identify
![\displaystyle f(x) = 2x + 4 \\\left[ -1 ,\ 3]](https://img.qammunity.org/2021/formulas/mathematics/college/93mcexlhnbfm3ii9zflkztqk7nt7ftsj18.png)
Step 2: Integrate
- Substitute in variables [Area of a Region Formula]:
![\displaystyle \int\limits^3_(-1) {2x + 4} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/6ms3wswdsjlbhgjeu15d5r7lr56wry2g11.png)
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle \int\limits^3_(-1) {2x + 4} \, dx = \int\limits^3_(-1) {2x} \, dx + \int\limits^3_(-1) {4} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/708x7tvgslxgg5r5ftcv6trddn5eehhigv.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constants]:
![\displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 2 \int\limits^3_(-1) {x} \, dx + 4 \int\limits^3_(-1) {} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/yxkl9p9evjarkgip0fed1k96xgma8rh9w0.png)
- [Integrals] Integration Rule [Reverse Power Rule]:
![\displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 2 \bigg( (x^2)/(2) \bigg) \bigg| \limits^3_(-1) + 4(x) \bigg| \limits^3_(-1)](https://img.qammunity.org/2021/formulas/mathematics/college/5fbt59vx2ku89or095mhkvshn361kpmpyt.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 2(4) + 4(4)](https://img.qammunity.org/2021/formulas/mathematics/college/cce72r58h8nbtovpi4vyvvxbn62oxjxxe2.png)
- Simplify:
![\displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 24](https://img.qammunity.org/2021/formulas/mathematics/college/vq7v05ygtzh82gq526ym425shk0aew2kwg.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration