64.0k views
0 votes
Find the area (in square units) of the region under the graph of the function f on the interval [−1, 3].

f(x) = 2x + 4

1 Answer

5 votes

Answer:


\displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 24

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = 2x + 4 \\\left[ -1 ,\ 3]

Step 2: Integrate

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle \int\limits^3_(-1) {2x + 4} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int\limits^3_(-1) {2x + 4} \, dx = \int\limits^3_(-1) {2x} \, dx + \int\limits^3_(-1) {4} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constants]:
    \displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 2 \int\limits^3_(-1) {x} \, dx + 4 \int\limits^3_(-1) {} \, dx
  4. [Integrals] Integration Rule [Reverse Power Rule]:
    \displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 2 \bigg( (x^2)/(2) \bigg) \bigg| \limits^3_(-1) + 4(x) \bigg| \limits^3_(-1)
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 2(4) + 4(4)
  6. Simplify:
    \displaystyle \int\limits^3_(-1) {2x + 4} \, dx = 24

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Kksensei
by
5.8k points