13.8k views
2 votes
Find the area (in square units) of the region under the graph of the function f on the interval [1, 7].

f(x) = 1/x

User Fabs
by
8.5k points

1 Answer

1 vote

Answer:


\displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = (1)/(x) \\\left[ 1 ,\ 7 \right]

Step 2: Integrate

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx
  2. [Integral] Logarithmic Integration:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln \big| x \big| \bigg| \limits^7_1
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7 - \ln 1
  4. Simplify:
    \displaystyle \int\limits^7_1 {(1)/(x)} \, dx = \ln 7

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Adrian Krebs
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories