Answer:
(a) The test statistic value is -4.123.
(b) The critical values of t are ± 2.052.
Explanation:
In this case we need to determine whether there is evidence of a difference in the mean waiting time between the two branches.
The hypothesis can be defined as follows:
H₀: There is no difference in the mean waiting time between the two branches, i.e. μ₁ - μ₂ = 0.
Hₐ: There is a difference in the mean waiting time between the two branches, i.e. μ₁ - μ₂ ≠ 0.
The data collected for 15 randomly selected customers, from bank 1 is:
S = {4.21, 5.55, 3.02, 5.13, 4.77, 2.34, 3.54, 3.20, 4.50, 6.10, 0.38, 5.12, 6.46, 6.19, 3.79}
Compute the sample mean and sample standard deviation for Bank 1 as follows:
![\bar x_(1)=(1)/(n_(1))\sum X_(1)=(1)/(15)[4.21+5.55+...+3.79]=4.29](https://img.qammunity.org/2021/formulas/mathematics/college/vs5fxr4i9y6b75vb9u8frdtflueig1q6z3.png)
![s_(1)=\sqrt{(1)/(n_(1)-1)\sum (X_(1)-\bar x_(1))^(2)}\\=\sqrt{(1)/(15-1)[(4.21-4.29)^(2)+(5.55-4.29)^(2)+...+(3.79-4.29)^(2)]}\\=1.64](https://img.qammunity.org/2021/formulas/mathematics/college/2vi9htfmg4f8342rbiaohpesnmqopdlwf5.png)
The data collected for 15 randomly selected customers, from bank 2 is:
S = {9.66 , 5.90 , 8.02 , 5.79 , 8.73 , 3.82 , 8.01 , 8.35 , 10.49 , 6.68 , 5.64 , 4.08 , 6.17 , 9.91 , 5.47}
Compute the sample mean and sample standard deviation for Bank 2 as follows:
![\bar x_(2)=(1)/(n_(2))\sum X_(2)=(1)/(15)[9.66+5.90+...+5.47]=7.11](https://img.qammunity.org/2021/formulas/mathematics/college/gtq7ook25ns5qina7kf5hq1fttu8nptyty.png)
![s_(2)=\sqrt{(1)/(n_(2)-1)\sum (X_(2)-\bar x_(2))^(2)}\\=\sqrt{(1)/(15-1)[(9.66-7.11)^(2)+(5.90-7.11)^(2)+...+(5.47-7.11)^(2)]}\\=2.08](https://img.qammunity.org/2021/formulas/mathematics/college/5zhkzlwioqaxi0g7lb80jwyx0vo6s66xsj.png)
(a)
It is provided that the population variances are not equal. And since the value of population variances are not provided we will use a t-test for two means.
Compute the test statistic value as follows:
![t=\frac{\bar x_(1)-\bar x_(2)}{\sqrt{(s_(1)^(2))/(n_(1))+(s_(2)^(2))/(n_(2))}}](https://img.qammunity.org/2021/formulas/mathematics/college/hfstaaqjdz02jjqnzjrmg20yv2zm04iwi2.png)
![=\frac{4.29-7.11}{\sqrt{(1.64^(2))/(15)+(2.08^(2))/(15)}}](https://img.qammunity.org/2021/formulas/mathematics/college/g0pz6j8wacbo0ehjprekhd4gycinyyg156.png)
![=-4.123](https://img.qammunity.org/2021/formulas/mathematics/college/gze2p2yyymgnfxz1sfratmfehtfheja0q7.png)
Thus, the test statistic value is -4.123.
(b)
The degrees of freedom of the test is:
![m=([(s_(1)^(2))/(n_(1))+(s_(2)^(2))/(n_(2))]^(2))/((((s_(1)^(2))/(n_(1)))^(2))/(n_(1)-1)+(((s_(2)^(2))/(n_(2)))^(2))/(n_(2)-1))](https://img.qammunity.org/2021/formulas/mathematics/college/9of2nn48b0q1npiy0a62zxaq52kk5wmxre.png)
![=([(1.64^(2))/(15)+(2.08^(2))/(15)]^(2))/((((1.64^(2))/(15))^(2))/(15-1)+(((2.08^(2))/(15))^(2))/(15-1))](https://img.qammunity.org/2021/formulas/mathematics/college/kosfpel1etbpdzd9tcb4djx2br826y6ixz.png)
![=26.55\\\approx 27](https://img.qammunity.org/2021/formulas/mathematics/college/r08zugm64h2qqb0d50j9io5hm55j1mz749.png)
Compute the critical value for α = 0.05 as follows:
![t_(\alpha/2, m)=t_(0.025, 27)=\pm2.052](https://img.qammunity.org/2021/formulas/mathematics/college/dqdypem33ya4i94q1waznr30dc5puo6hdf.png)
*Use a t-table for the values.
Thus, the critical values of t are ± 2.052.