19.9k views
5 votes
A. Find the linear approximating polynomial for the following function centered at the given point a.point a.

b. Find the quadratic approximating polynomial for the following function centered at the given point a.
c. Use the polynomials obtained in parts a. and b. to approximate the given quantity.
f(x) = 16x^3/2 a = 4; approximate 16(4.2^3/2).

User GodinA
by
4.1k points

1 Answer

2 votes

Answer:

(a)
L(x)=48x-64

(b)
P_(2)(x)=48x-64+3(x-4)^(2)

(c)Using Linear Approximation,L(4.2)=137.6

Using Quadratic Approximation,
P_(2)(4.2)=137.72

Explanation:

Given:
f(x) = 16x^(3/2), a = 4

(a)Linear Approximation,
L(x)=f(a)+f'(a)(x-a)


f(4) = 16*4^(3/2)=128


f'(x) = 24โˆš(x)


f'(4) = 24โˆš(4)=24*2=48


L(x)=128+48(x-4)


L(x)=128+48x-192\\L(x)=48x-64

(b)Quadratic Approximation,
P_(2)(x)=f(a)+f'(a)(x-a)+(1)/(2)f''(a)(x-a)^(2)


f''(x)=12x^(-1/2)\\f''(4)=12*4^(-1/2)=6


P_(2)(x)=48x-64+3(x-4)^(2)

(c)To approximate:

L(x)=48x-64

L(4.2)=48(4.2)-64=137.6

Also, Using Quadratic Approximation


P_(2)(x)=48x-64+3(x-4)^(2)\\P_(2)(4.2)=48(4.2)-64+3(4.2-4)^(2)=137.72

User Sergei Zinovyev
by
3.8k points