Answer:
The 99% confidence interval for the average flight time is (103.38, 108.10).
Explanation:
The (1 - α)% confidence interval for population mean when the population standard deviation is not known is:
![CI=\bar y\pm t_(\alpha/2, (n-1))* (s)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/fbxkga47kys3ix3w7q4ivaaeresnzr96ry.png)
The information provided is:
![n=61,\ \ \sum\limits^(61)_(i=1){y_(i)}=6450,\ \ \sum\limits^(61)_(i=1){y_(i)^(2)}=684900](https://img.qammunity.org/2021/formulas/mathematics/college/z81jb1o145kbh7m9u4uwq1xy8yxac8ao9c.png)
Compute the sample mean as follows:
![\bar y=(1)/(n)\sum\limits^(61)_(i=1){y_(i)}=(6450)/(61)=105.74](https://img.qammunity.org/2021/formulas/mathematics/college/p07q5td4pha4da27lg2d9fh9pjbqus2h87.png)
Compute the sample standard deviation as follows:
![s=\sqrt{\frac{n\sum\limits^(61)_(i=1){y_(i)^(2)} - (\sum\limits^(61)_(i=1){y_(i)})^(2)}{n(n-1)}}=\sqrt{(61*684900 - (6450)^(2))/(61(61-1))}=6.9424](https://img.qammunity.org/2021/formulas/mathematics/college/6gkzmf5ytl0pm201n87rweq442w5f4l001.png)
The critical value of t for 99% confidence level and (n - 1) = 60 degrees of freedom is:
![t_(\alpha/2, (n-1))=t_(0.01/2, (61-1))=t_(0.005, 60)=2.66](https://img.qammunity.org/2021/formulas/mathematics/college/u7y2118vxt5tfzduhsurfeimn11khtls33.png)
*Use a t-table.
Compute the 99% confidence interval for the average flight time as follows:
![CI=\bar y\pm t_(\alpha/2, (n-1))* (s)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/fbxkga47kys3ix3w7q4ivaaeresnzr96ry.png)
![=105.74\pm 2.66* (6.9424)/(√(61))\\=105.74\pm 2.3644\\=(103.3756, 108.1044)\\\approx (103.38, 108.10)](https://img.qammunity.org/2021/formulas/mathematics/college/omcyf344112bzp007jn4jgzpboj5elkrkj.png)
Thus, the 99% confidence interval for the average flight time is (103.38, 108.10).