Answer:
c = 0.165
Explanation:
Given:
f(x, y) = cx y(1 + y) for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 3,
f(x, y) = 0 otherwise.
Required:
The value of c
To find the value of c, we make use of the property of a joint probability distribution function which states that
![\int\limits^a_b \int\limits^a_b {f(x,y)} \, dy \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/98f4434l0zx6splbtw7coqlbk9py9iamwo.png)
where a and b represent -infinity to +infinity (in other words, the bound of the distribution)
By substituting cx y(1 + y) for f(x, y) and replacing a and b with their respective values, we have
![\int\limits^3_0 \int\limits^3_0 {cxy(1+y)} \, dy \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ccvng9jexocjzx5ro6ctr6aipujxyr5p17.png)
Since c is a constant, we can bring it out of the integral sign; to give us
![c\int\limits^3_0 \int\limits^3_0 {xy(1+y)} \, dy \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/pnkzr4esix5idzd76d4gjtmmtb5itad42g.png)
Open the bracket
![c\int\limits^3_0 \int\limits^3_0 {xy+xy^(2) } \, dy \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/z8kvm7mxlzg565r6foqebyf10t95plasb3.png)
Integrate with respect to y
![c\int\limits^3_0 {(xy^(2))/(2) +(xy^(3))/(3) } \, dx (0,3}) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/juk3nmboih3txci6zjc4d7cszif81s1e24.png)
Substitute 0 and 3 for y
![c\int\limits^3_0 {((x* 3^(2))/(2) +(x * 3^(3))/(3) ) - ((x* 0^(2))/(2) +(x * 0^(3))/(3))} \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/w63vr34xf2jj4uerzq8zruye7ivxjx8y1p.png)
![c\int\limits^3_0 {((x* 9)/(2) +(x * 27)/(3) ) - (0 +0) \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/yhryyyolgnulro971eemfdt3j7c34vyh27.png)
![c\int\limits^3_0 {((9x)/(2) +(27x)/(3) ) \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/pebqkbq4exr1q6jai5yocftrqzifirhjdr.png)
Add fraction
![c\int\limits^3_0 {((27x + 54x)/(6)) \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/n3y2ekd8xpvx2hxhg819kf3o7b7a6z1krf.png)
![c\int\limits^3_0 {(81x)/(6) \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/xll9bilsrcdlu95fa3p0ltie6ffyapsutw.png)
Rewrite;
![c\int\limits^3_0 (81x * (1)/(6)) \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/lloowg7oy9x3ijtkaokyxqay0nda855tpk.png)
The
is a constant, so it can be removed from the integral sign to give
![c * (1)/(6)\int\limits^3_0 (81x ) \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/7w9znpkce89787fv0q64jrskp7w3r1phps.png)
![(c)/(6)\int\limits^3_0 (81x ) \, dx = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/x5h5pkn0fmy7jh158xs5ouemgar9v2sddm.png)
Integrate with respect to x
![(c)/(6) * (81x^(2))/(2) (0,3) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/470h59jdzjhpe6zla6ipn9ftvn00qjtcwv.png)
Substitute 0 and 3 for x
![(c)/(6) * (81 * 3^(2) - 81 * 0^(2))/(2) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/563g78qqasuiyhykpljvcnr54kob0pp6qy.png)
![(c)/(6) * (81 * 9 - 0)/(2) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/xx9snkvwo28k7x48j5yp9vj7lwfl1swfnb.png)
![(c)/(6) * (729)/(2) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/rvb95t2rk82s1jf8726mp40kphxhxgdu58.png)
![(729c)/(12) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/dbv7usid3h9t0z6mfco3as0c3sk6liolju.png)
Multiply both sides by
![(12)/(729)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yevd0jiazlhx6i4ihk65vln61x6t7sm66k.png)
![c = (12)/(729)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qxrn3cylu7rq9x5x3c39gzxf9zhlh14nw1.png)
![c = 0.0165 (Approximately)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m95r0veipdzth7704svhflbvpt5khalb7a.png)