387,558 views
13 votes
13 votes
Enter the values needed to find the

length AB. (Simplify your answer.)
A(-3a, b)
F
В(3a, b)
AB = ([?])2
✓([?])2 + (0)2
Distance Formula: d = x)2 + (92-y)
C-a Sb)
Enter

Enter the values needed to find the length AB. (Simplify your answer.) A(-3a, b) F-example-1
User Inodb
by
2.3k points

1 Answer

12 votes
12 votes

Answer:

The missing value is 6a

Explanation:

Given:


\displaystyle \large{A(-3a,b)}\\\displaystyle \large{B(3a,b)}

Find:

Missing Value

Distance Formula:


\displaystyle \large{√((x_2-x_1)^2+(y_2-y_1)^2)}

Determine:


\displaystyle \large{(x_2,y_2)=(3a,b)}\\\displaystyle \large{(x_1,y_1)=(-3a,b)}

Input given information above in the formula:


\displaystyle \large{AB=√((3a-(-3a))^2+(b-b)^2)}\\\displaystyle \large{AB=√((3a+3a)^2+(0)^2)}\\\displaystyle \large{AB=√((6a)^2)}\\\displaystyle \large{AB=6a}

The length is 6a but since we want to find the value in the square root then the answer is still 6a

User Albertb
by
2.8k points