Answer:
![x=4\\y=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/tz6qv58ckeyo0nfmh4do50lcbyo85em18q.png)
Explanation:
![y=4x-13\\2x+3y=17](https://img.qammunity.org/2021/formulas/mathematics/high-school/5akze6d3yii74tcr64e6gvqcr0lf84iv29.png)
Since our ''y'' is already isolated, you can simply plug ''y'' information into the second equation.
![2x+3y=17\\2x+3(4x-13)=17\\2x+12x-39=17\\14x=17+39\\14x=56\\x=(56)/(14) \\x=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/wde9vbl3ez2htro917ic2mj8b7brjdukk0.png)
Now we can use the first equation and replace ''x'' to find ''y''
![y=4x-13\\y=4(4)-13\\y=16-13\\y=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/nfr05bd2bnbxagylab9m03wjuescmghnbf.png)
To prove that your values are correct, take any of the equations and replace their values.
![y=4x-13\\3=4(4)-13\\3=16-13\\3=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/tt0uqo7lu808rl45fsohuuzrb6e45gaq1j.png)