127k views
5 votes
If a + b + c.= 5 and ab + bc +ca = 10 , then prove that a3+ b3+ c3-3abc = -25

ANSWER WITH WORKING THX

User Isyi
by
8.4k points

1 Answer

2 votes

Start with


(a+b+c)^3=a^3+b^3+c^3+3(a^2b+a^2c+ab^2+ac^2+b^2c+bc^2)+6abc

Given that
a+b+c=5, we know
(a+b+c)^3=125.

Also,
ab+bc+ca=10, so


a^2b+a^2c+ab^2+ac^2+b^2c+bc^2=a(ab+ac)+b(ab+bc)+c(ac+bc)


=a(10-bc)+b(10-ca)+c(10-ab)


=10(a+b+c)-3abc


=50-3abc

So we have


125=a^3+b^3+c^3+3(50-3abc)+6abc


125=a^3+b^3+c^3+150-9abc+6abc


\implies -25=a^3+b^3+c^3-3abc

QED

User LostBalloon
by
8.6k points